الخوارزميات
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

الخوارزميات

منتدى خاص بتجمع طالبات الثانوية 58 ، يتم من خلاله تبادل معلومات الرياضيات
 
الرئيسيةأحدث الصورالتسجيلدخول

 

 قواعد الاحتمال :

اذهب الى الأسفل 
كاتب الموضوعرسالة
amjad

amjad


عدد المساهمات : 2
تاريخ التسجيل : 16/04/2012

قواعد الاحتمال : Empty
مُساهمةموضوع: قواعد الاحتمال :   قواعد الاحتمال : Emptyالسبت مايو 10, 2014 9:17 pm

                                بسم الله الرحمن الرحيم :                                      الاحتمالات  (Probabilities )
مفهوم الاحتمال :

هو إمكانية وقوع أمر ما لسنا على ثقة تامة بحدوثه، ويلعب الاحتمال دوراً أساسياً في حياتنا اليومية بالتنبؤ بإمكانية وقوع حدث ما وهو النظرية التي يستخدمها الإحصائي لتساعده في معرفة مدى تمثيل العينة العشوائية محل الدراسة للمجتمع المأخوذ منه العينة، وتنحصر قيمة الاحتمال بين الصفر والواحد الصحيح والصفر للاحتمال المستحيل في حين الواحد الصحيح للاحتمال المؤكد والاحتمال يبحث في ثلاثة مسائل هامة معتمدة على القواعد الخاصة بالاحتمال التي سنذكرها في حينها والمسائل الثلاثة هي:
1) حساب الاحتمال المتمثل بالتكرار النسبي.
2) حساب الاحتمال بدلالة احتمالات أخرى معلومة من خلال عمليات مثل الاتحاد والتقاطع والفرق .
3) طرق إجراء التقدير كالتوزيعات الاحتمالية.

أنواع الاحتمال:
1) الاحتمال المنتظم: وهو تساوي احتمالات عناصر الظاهرة فاحتمال الحصول على أي عدد عند إلقاء حجر النرد هو 1 : 6 .

 
2) الاحتمال الضمني أو الشخصي (Subjective Probabilities): الاحتمال الذي يعتقده شخص أما على حساب خبرته في الظاهرة محل الدراسة وهو يختلف من شخص لآخر كاحتمال ربح حصان في
    سباق للخيل.
3) الاحتمالات التكرارية النسبية (The Relative Frequency): ويتم تحديده كما يلي:
       أ) نسبة وقوع الحدث على مدى طويل مع ثبات الظروف المحيطة بالحدث.
      ب) حساب مرات وقوعه في عدد كبير من المحاولات أي:
               عدد مرات الظهوره                              
P(A) = ــــــــــــــــــــــــــــــــــــــــــــــــــــ
             عدد مرات إجراء التجربة

التعاريف الأساسية للاحتمال:

التجربة العشوائية (RANDOM SAMPLING): كل إجراء نقوم به نعلم مكوناته دون معرفة أي منها سيقع، وتعرف في علم إحصاء بالتجربة الإحصائية وهي كل عملية تعطي قياساً لظاهرة ما.
                        التجربة العشوائية بإلقاء قطعة النقود التي عناصرها المجموعة {صورة ، كتابة} وقد يقع أي منهم وتعرف الصورة والكتابة بعناصر العينة.
                        التجربة العشوائية بإلقاء حجر النرد الذي عناصره المجموعة {1، 2، 3، 4، 5، 6} وقد يقع أي منهم، وهكذا ...
فضاء النواتج (Sample Space):
                   تعرف المجموعة {1، 2، 3، 4، 5، 6} في مثالنا السابق للتجربة العشوائية بفضاء النواتج أو قضاء الإمكانيات أو فضاء العينة (Sample Space)
                   فضاء العينة لتجربة إلقاء قطعة نقود مرة واحدة { T ، H} أو تمثل بشكل فن مستطيل أو دائرة بالداخل العناصر الخاصة بالتجربة العشوائية.
الأحداث Events :
الحدث هو مجموعة جزئية من فضاء العينة وعدد الأحداث تخضع للصيغة 2ن حيث ن عدد عناصر فضاء العينة واحتمال وقوع الحدث A هو نسبة عدد حالات وقوعه بالفعل بالنسبة لكل الحالات الممكنة لوقوعه أي أن: P(A) = M ÷ N حيث M عدد حالات وقوع A بالفعل ، N عدد الحالات الممكنة فاحتمال ظهور عدد فردي عند إلقاء حجر النرد مرة واحدة هو 0.5 لأن الأعداد الفردية ثلاثة (1، 3، 5) والتي تحقق المطلوب (عدد فردي) وكل الأعداد ستة (1، 2، 3، 4، 5، 6) فالاحتمال 3 ÷ 6 = 0.5 ، الشكل المقابل لحجر النرد أو الزار أو الزهرة

الحدث البسيط ( Simple event ): وهو الحدث المكون من عنصر واحد مثل {1} في تجربة إلقاء حجر النرد.
الحدث المركب ( Compound event ): الحدث المكون من أكثر من عنصر مثل {2، 4، 6} حدث العدد زوجي في تجربة إلقاء حجر النرد.
الحدث المستحيل: الحدث الذي لا يحوي أي عنصر كحدث ظهور العدد 7 في تجربة إلقاء حجر النرد.
الحدث المؤكد: الحدث الذي يضم كافة عناصر الفضاء كحدث ظهور عدد أقل من 7 في تجربة إلقاء حجر النرد.
الحدثان المتنافيان ( Mutually Exclusive events ): الحدثان اللذان لا يشتركا في أي عنصر وتقاطعهم المجموعة الخالية أي A ∩ B = f مثل {2}، {3}، وتعرف بالأحداث غير المتصلة.
الأحداث المنتظمة (dependent events): المتساوية في احتمالاتها. ففي تجربة إلقاء حجر النرد مرة واحدة يكون:  P(1) = P(2) = P(3) =P(4) = P(5) = P(6) = 1:6
الأحداث الشاملة ( Exhaustive events ): إذا كان S فضاء عينة ما فإن الأحداث A, B, C شاملة إذا تحقق الشروط الثلاثة الآتية:
                               1) متنافية فيما بينها أي:  A ∩ B = f و  A ∩ C = f و  C ∩ B = f
                               2) أياً منها ليست خالية أي  A ≠ f و   B ≠ f و   C ≠ f
                               3) إتحادها يساوي S أي A υ B υ C = S

الأحداث المكملة (Complementary events): الحدثان اللذان اتحادهم يساوي فضاء العينة بمعنى Aحدث فإن A`الحدث المكمل حيث A υ`A = S
الحدثان المستقلان ( Independent events ): اللذان لا يتأثر أي منهم بالآخر (وقع أحدهم لا يؤثر أو يتأثر بوقوع أو عدم وقوع الآخر).
(P(A ∩ B) = P(B) × P(A : قاعدة الضرب للاحتمالات للإحداث المستقلة
        يمكن تعميم هذه القاعدة لأكثر من حدثين
(P(A ∩ B ∩ C ∩ ... ∩ Z) = P(A) × P(B) × P(C)×... × P(Z
الأحداث الغير مستقلة (المشروطة) Conditional Probability:
   حدثان وقوع أحدهما يؤثر في وقوع الآخر مثل سحب ورقة من أوراق اللعب دون إرجاع مما يؤدي لتأثير سحب ورقة جديدة لنقص الفرصة بنقص عدد الأوراق (من 52  إلى 51)
   فالحدثان A, B نكتب حدث وقوع A بشرط وقوع B بالصورة A / B .
مثال:
صندوق يحوي 14 كرة منها 8 حمراء ، 6 زرقاء سحبت كرتان (عشوائياً) من الصندوق الواحدة وراء الأخرى دون إرجاع ( أو سحب كرتان معاً ).
       أحسب احتمال أن تكون الكرتان حمراء وزرقاء (الأولى زرقاء والثانية حمراء).
الحل:
   ليكن A = حدث سحب كرة حمراء اللون
   وليكن B = حدث سحب كرة زرقاء اللون

فالمطلوب هوP(A / B)s حيث A السحبة الثانية ، B السحبة الأولى.
    (P(A ∩ B) = P(B) × P(A / B
                                                                 24      6       8
                                                   P(A ∩ B) = —  × — = —— = 0.2637
                                                                19    13      14
لاحظ سحب كرتان نفس اللون = ل(ح ، ح) + ل(ز ، ز) = (8÷14)×(7÷13) + (6÷14)×(5÷13) = 0.4725  
لاحظ سحب كرتان مختلفتان في اللون = ل(ح ،ز) + ل(ز ، ح) = 0.2637 + 0.2637 = 0.5274
لاحظ مجموع الاحتمالان السابقان 0.4725 + 0.5274 = 0.9999 ≈ 1    



               ____________________  اتمنى يكون مفيد واسال الله التوفيق لنا جميعاً Wink 
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
قواعد الاحتمال :
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» الاحتمال في الرياضيات .

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
الخوارزميات  :: الثالث ثانوي :: عام-
انتقل الى: