الخوارزميات

منتدى خاص بتجمع طالبات الثانوية 58 ، يتم من خلاله تبادل معلومات الرياضيات
 
الرئيسيةاليوميةس .و .جبحـثالأعضاءالمجموعاتالتسجيلدخول

شاطر | 
 

 التوزيعات الاحتمالية Probability Distributions

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
مريم العثيمين
Admin


عدد المساهمات : 3
تاريخ التسجيل : 16/04/2012

مُساهمةموضوع: التوزيعات الاحتمالية Probability Distributions   السبت مايو 03, 2014 3:51 am

توزيع ذات الحدين The Binomial Distribution


توزيع يختص بالتجارب العشوائية ذات الناتجين صح أو خطأ (فشل ونجاح) للمحاولات المستقلة المتكررة كرمي زهرة النرد فالنتيجة عدد أولي أو غير أولي ، زوجي أو فردي وهو ما يعرف بتجربة ذات الحدين التي تحقق الشروط الآتية:

   1) كل محاولة تعطي نتيجة واحدة فقط نجاح أو فشل وهو ناتج ثابت.

   2) واحتمال النجاح (p) + احتمال الفشل (q)ت= 1 ،  q = 1 – p

   3) المحاولات (عددها n) مستقلة فيما بينها.

   ليكن X عدد المحاولات الناجحة من مرات عددها n وبالتالي يكون عدد مرات الفشل هو X – n، وأن X يعرف بمتغير ذات الحدين وتوزيعه الاحتمالي يعرف بتوزيع ذات الحدين وللحصول على القانون نفترض P(x)= P(X=x)i وأن x عدد المحاولات الناجحة ، و بالتالي سيكون (n – x) عدد المحاولات الفاشلة ويكون احتمال الحدث في هذه الحالة هو Px (1 – P)n – x مع ملاحظة أن الأحداث مستقلة (فالاحتمال يساوي حاصل الضرب احتمالات النجاحات. ( P(a∩b)= P(a) ×P(b ) كما أن عدد طرق اختيار x نجاح من n محاولة هو nCx  ( تقرأ توافيق n مأخوذة x مرة ) ويكون:

P(x) = P(X = x) =  nCx Px (1 – P)n – x  , x = 0, 1, 2, 3, ... , n





                      5×4×3                     7 × 6                      6×5×4                     n(n–1)(n–2)×... ×(n–x+1)

Remark: 5C3 = ———— , 7C2 = ————   ,  6C3 = ————   , nCx = ——————————— , nCx

                      3×2×1                     2 × 1                       3×2×1                      x(x–1)(x–2)×...×3×2×1

يسمى التوزيع الاحتمالي X بذي الحدين إذا كانت دالة احتماله بالصورة:

P(x) = nCx Px (1 – P)n – x

   توزيع ذي الحدين من خصائصه: أن  وسطه = np    وتباينه = npq    حيث p احتمال النجاح ، q احتمال الفشل ، الانحراف المعياري = الجذر ألتربيعي للتباين

فإذا القي حجر نرد 180 مرة فإن الوسط لعدد مرات الحصول على 6 هو 180 × (1/6) = 30 والتباين هو 180×(1/6)×(5/6) = 25 والانحراف المعياري هو 5 .

   ومثلاً: في اختبار مكون من عشرة أسئلة وكل سؤال مكون من أربعة إجابات فقد إحداها صحيحة والثلاث الأخرى خاطئة، وقررنا الاختيار العشوائي للإجابة الصحيحة من بين الإجابات الأربع لعدم معرفتنا بالإجابة الصحيحة.    

   هنا كل إجابة تمثل محاولة نجاح ( 0.25) أو خطأ (0.75) وعدد المحاولات n هو 10 والمحاولات مستقلة فلذا تحقق توزيع ذات الحدين ويكون:

P(x) = 10Cx (0.25)x (0.75)10 – x  , x = 0, 1, 2, ..., 10

P(0) = 10C0 (0.25)0 (0.75)10 – 0 = 1× 1 × 0.056 = 0.056

ويمكن وضع النواتج كالآتي:


X 0 1 2 3 4 5 6 7 8 9 10 TOTAL
P(X)= 0.056314\ 0.187712\ 0.281568\ 0.250282\ 0.145998\ 0.058399\ 0.016222\ 0.003090\ 0.000386
0.000029\ 0.000001\ 1

مثال آخر:

   في تجربة إلقاء حجر النرد 6 مرات، احسب احتمال ظهور العدد 5 في تلك المحاولات.

الحــل:

   S = { 1, 2, 3, 4, 5, 6 } , P = 1/6 , 1 – P = 5/6

P(x) = 6Cx (0.25)x (0.75)6 – x  , x = 0, 1, 2, ..., 10

P(0) = 6C0 (1/6)0 (5/6)6 – 0 = 1× 1 × 0.33490 = 0.33490

P(1) = 6C1 (1/6)1 (5/6)6 – 1 = 6× (1/6) × 0.40188 = 0.40188

ويمكن وضع النواتج كالآتي:


X 0 1 2 3 4 5 6 TOTAL
P(X)= 0.33490\ 0.40188\ 0.20094\ 0.05358 \0.00804\ 0.00064\ 0.00002 1

احتمال ظهور العدد 5 = 0.00064    أي    P(5) = 0.00064


نظرية: إذا كان المتغير العشوائي X متغير ذات الحدين فإن التوقع الرياضي للمتغير X يساوي وسط X أي μ = E(X) = np وتباين X هو σ2 = E((X–μ)2) = npq

         والانحراف المعياري هو الجذر ألتربيعي للتباين (σ).

_________________
سحبان الله والحمد لله ولا إله إلا الله
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو
 
التوزيعات الاحتمالية Probability Distributions
استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» ßÊÈ ãåãÉ Ýí Çá statistics and probbility

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
الخوارزميات  :: الثالث ثانوي :: عام-
انتقل الى: